
Proof Of The Infinite Sum Of A Geometric Series

1 Introduction

Before the proof begins, first we will define what sort of series is being
considered. The sums in question are of the form

∞∑
i=1

ari−1

As is clear from the series, a denotes the initial value of the sequence
(an) which is being summed (an = arn+1) since a1 = ar0 = a, and r is the
ratio between successive terms in the sequence (an+1

an
= r).

As an example, consider the sequence 4, 12, 36, .... a would be 4, since the
first value in the sequence is 4, and the ratio between any two successive
terms is r = 3.

2 Finite (Partial) Sum

The nth partial sum of a series is the sum of the first n terms in the sequence.
Therefore, we can express the nth partial sum of a sequence, (an), as

n∑
i=1

an

Our goal is to express the nth partial sum of a geometric series. To
do so, for ease of notation, let Sn :=

∑n
i=1 ar

i−1. By definition, Sn =
a+ ar + ar2 + ...+ arn−1. If we subtract the first term and divide by r, we
get the n− 1th partial sum (Sn−a

r = a+ ar + ...+ arn−2 = Sn−1). We also
get the n − 1th partial sum if we instead simply subtract the final term of
the series (Sn − arn−1 = a + ar + ... + arn−2 = Sn−1). Because these are
equivalent, we can say that

Sn − a

r
= Sn − arn−1
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=⇒ Sn − a = rSn − arn

=⇒ Sn − rSn = a− arn

=⇒ Sn(1− r) = a(1− rn)

=⇒ Sn =
a(1− rn)

1− r

This gives us our desired result of a formula for the nth partial sum, where

n∑
i=1

ari−1 =
a(1− rn)

1− r

This case only works if r ̸= 1; however, it is trivial to find the nth partial
sum in this case since all entries of the sequence are a, meaning that the nth
partial sum is equal to an.

For one example, consider the example sequence from the introduction. The
third partial sum of the series is equal to S3 = 4 + 12 + 36 = 52. Substi-

tuting the values of a, r, n into the formula we derived gives S3 =
4(1−33)
1−3 =

4(−26)
−2 = 2(26) = 52.

3 Infinite Sum

Before we derive a formula for the infinite series, it is important to first
consider when the series converges. The method that will be used here is
the Ratio Test. The test states that if limn→∞

|an+1|
|an| = L then the following

is true:

• L < 1, the series converges absolutely

• L > 1, the series diverges

• L = 1, the test is inconclusive

Applying the Ratio Test to our geometric series gives

lim
n→∞

|an+1|
|an|

= lim
n→∞

|arn|
|arn−1|

=⇒ lim
n→∞

|an+1|
|an|

= |r| = L
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Since L = |r|, we know that geometric series converges absolutely if
|r| < 1, diverges if |r| > 1. The case of L = 1 occurs only when r = ±1 and
if r = 1 then, unless a = 0, the series diverges. Because of this, we will only
consider the case where |r| < 1.

The infinite series can be defined as the limit of the partial sums. That
is to say that

∞∑
i=1

ari−1 := lim
n→∞

n∑
i=1

ari−1

Since we already know an expression for the partial sum, we can alternatively
write this as

∞∑
i=1

ari−1 = lim
n→∞

a(1− rn)

1− r

Since we are only considering the case of |r| < 1, we know that the limn→∞ rn =
0.

=⇒
∞∑
i=1

ari−1 =
a(1− 0)

1− r
=

a

1− r

Which is the final answer.
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