Integral Test For Series

1 Introduction

The Integral Test for series is a test for checking if a series converges by comparing it to a continuous function. The test states that:

Suppose f(x) is a continuous, positive, decreasing function on an interval $[m, \infty)$, and that $f(n) = a_n$, then:

- If $\int_m^{\infty} f(x) dx$ is convergent then $\sum_{n=m}^{\infty} a_n$ is also convergent
- If $\int_m^{\infty} f(x) dx$ is divergent then $\sum_{n=m}^{\infty} a_n$ is also divergent

Further, it is true that, for any $N \ge m$, the series evaluated from N to ∞ is bounded by:

$$\int_{N+1}^{\infty} f(x)dx \le \sum_{n=N}^{\infty} a_n \le \int_{N}^{\infty} f(x)dx$$

More generally (here m is an integer greater than or equal to the m from which f is defined),

$$\int_{m+1}^{n+1} f(x) dx \le \sum_{k=m+1}^{n} a_k \le \int_{m}^{n} f(x) dx$$

2 Proof

Note that since f is decreasing, $f(n + 1) < \int_{n}^{n+1} f < f(n)$, and further $\int_{m}^{\infty} f = \lim_{t \to \infty} \int_{m}^{t} f = \sum_{n=m}^{\infty} \int_{n}^{n+1} f$. The convergence of the improper integral is dependent on the convergent of the series.

First, we will consider the left side of the inequality, namely that $f(n+1) < \int_n^{n+1} f$. This means that:

$$a_{n+1} < \int_{n}^{n+1} f$$
$$\implies \sum_{n=m}^{\infty} a_{n+1} \le \sum_{n=m}^{\infty} \int_{n}^{n+1} f = \int_{m}^{\infty} f$$

By the Comparison Test, $\sum a_{n+1}$ converges if $\sum_{n=m}^{\infty} \int_{n}^{n+1} f$ converges. Since the sum is equal to $\int_{m}^{\infty} f$, $\sum a_{n+1}$ converges if $\int_{m}^{\infty} f$ converges. By the Shift Property of series, this also means that $\sum a_n$ converges if $\int_{m}^{\infty} f$ converges.

Now, for the right side $(\int_{n}^{n+1} f < f(n))$, since $f(n) = a_n$,

$$\int_{n}^{n+1} f < a_{n}$$
$$\implies \int_{m}^{\infty} f = \sum_{n=m}^{\infty} \int_{n}^{n+1} f \le \sum_{n=m}^{\infty} a_{n}$$

By the Comparison Test, $\sum_{n=m}^{\infty} a_n$ diverges is $\int_m^{\infty} f$ diverges.

For the bounds of the series, the lower bound is simple to prove. Since $\int_{n}^{n+1} f < a_n$, clearly

$$\sum_{k=m+1}^{n} \int_{k}^{k+1} = \int_{m+1}^{n+1} f \le \sum_{k=m+1}^{n} a_{n}$$

The upper bound is also simple to prove. As stated before, $a_{n+1} < \int_n^{n+1} f$, and so $a_n < \int_{n-1}^n f$, therefore

$$\sum_{k=m+1}^{n} a_n \le \int_m^n f = \sum_{k=m+1}^n \int_{k-1}^k f$$
$$\implies \int_{m+1}^{n+1} f \le \sum_{k=m+1}^n a_n \le \int_m^n f$$

The infinite bounds follow simply by taking the proper integrals to infinity.